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ABSTRACT 

We construct a family of modules over Weyl algebras with the property of 

being non-slmple of finite length and also d-critical (i.e. d(M) > d(M/N) 
for every non-trivial submodule N, of M). Here d stands for the Gelfand- 

Kirillov dimension. We further study some properties of these modules. 

Introduction 

In the Oberwolfach conference on "Enveloping Algebras" held in February 1985 

P. Tauvel asked if any d-critical nmdule of finite length over a solvable Lie-algebra 

is simple. Here d refers to Gelfand-Kirillov dimension. 

Over commutative polynomial rings, the answer to this question is positive. 

Yet we show that the question has a negative answer already for nilpotent Lie- 

algebras. 

In fact, let An(C) be the Weyl algebra of index n over C, that is the algebra 

generated over C by {Pi,q,)i=l with the relations [pi,qj] 8ij and [pi,pj] = 

[qi,qj] = 0 for i , j  = 1 , . . . , n .  Then A,~(C) can be viewed as a quotient of the 

enveloping algebra of a nilpotent Lie-algebra, e.g. the Heisenberg algebra. It is 

easy to see that if An admits a non-simple d-critical module of finite length then 

such a module must admit a non-holononfic simple sub-module. 

We show that Tauvel's question has a negative answer by adapting Staiford's 

[St] construction of non-holonomic simple An(C) modules. 
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Stafford obtained two families of elements of An (depending on scalar param- 

eters). The first one in order to obtain simple non-holonomic modules for An, 
and the second one in order to obtain such modules for U(sl2 x s12). 

The basic idea here is to "deform" the second of those dements (namely the 

element at` := P2 + q2plql + Aqz(q~pl + p)-[-Pl E A2, A,tt E C,A ¢ Q,p ~ Z ) 

to values of the parameter p for which simplicity fails and then to see what kinds 

of modules one gets. In order to make this analysis we realized that Stafford's 

proof of simplicity in the case of the second element was not what we needed. 

Here we give a different proof based on a careful refinement of Stafford's proof 

for the simplicity for his first element. 

A key point is that for A E C\Q and/z E {1 ,0 , -1 , -2 , . . . }  the element a t, still 

generates a maximal ideal of A2. Here we observe that allowing the # parameter 

to take integer > 2 values we get a fmnily of d-critical modules of length 2. In 

particular this answers Tauvel's question by the negative. 

In general it is false that "deformations" of simple non-holononlic modules in 

the sense of varying the parameters always give nmdules of finite length. For 

example if one allows Stafford's A-parmneter (in his second exmnple) to take 

rational values one gets a module of infinite length. 

A further study of the class of nmdules constructed gave the following inter- 

esting results. 

First, the simple quotient of each module in this class is holonomic and has 

multiplicity (# - 1) in the sense of the Hilbert-Samuel polynomial. More partic- 

ularly, for tt = 2, the simple quotient is the standard module for A2. 

Secondly, the simple submodule is, up to an automorphism of A2, a Stafford 

module for a "reflected" #. That is, the new tt parameter takes the value 2 - 

/~. Here we observe a strange analogy with the spectrum of s12, although the 

questions involved are quite different. 

In principal one might have answered Tauvel's question by simply showing that 

there exists a simple holonomic module N and a simple non-holonomic module 

M with Ext~. (M,N) # 0. Unfortunately the main method to calculate such 

extension groups only works well when the first factor can be presented in the 

form An/I  with I a principal ideal, see [Mc-Ro]. This is not possible here. 

Moreover for non-holonomic modules one has no duality theory which could, for 

example, make it enough to show that Ext~t" (N, M) ~ 0 with N, M as above. 

In fact, our results show that Ext~.(N, M) can be non-zero with N a simple 
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holonomie module and M, a simple non-holononfic nmdule over A,,. (For M we 

take the Stafford module over A,,.) 

Although our results hold in the case of A,, for every n _> 2, for greater clarity 

and brevity we have restricted ourselves to the case of n = 2. 

This work forms a part of the author's Ph.D. thesis which was prepared in the 

Weizmann Institute of Science under the supervision of Prof. A. Joseph to whom 

the author wishes to express his deep gratitude. 

. 

. k2. kt_h t2 C-ba.sis of A2, where the 1.1 The standard mononfials P2 /'1 '/1 q2 form a 
_ t ' . k 2 . k l  It Is quadruple k := (k2, kl, 11,12) lies in N 4 and is called the d e g r e e  o~ J'2 ~q ql q2 • 

Take the lexicograplfic order on N 4 and define the d e g r e e  of a • A2 to be the 

maximal degree of the standard mononfials which appear with non-zero coeffi- 

cient in the expression of a as a sum of such monomials. 

For each a • A2 one defines the map ad a: b, ~ [a, b] of A2 to itself. It is a 

derivation of A2. 

Set z := q,p,. One has adz(p~qf) = (k - l)p~qf and we say that Pit q,k is an 

e i g e n v e e t o r  of eigenvalue (k - l) for a d z .  

1.2 Set R := C[q2, qi, pl], identified with a subalgebra of A2. 

PROPOSITION: Let A, I~ • C with A ~. Q. Set %, := p2+q2pl ql +Aql (qlpi q-tt)+pl. 

Assume fl • A2\at,  A2 is of minimal degree such that 

(1) I := aj, A2 + flA2 ~ A2. 

Then fl = cp~ -1 for some c E C* aad some t~ E {2,3, . . .} .  In particular a~A2 

is maximal i f  p ~ {2,3, . . .} .  

Proof." The fact that a~, E R[p2] is monic of degree one ill P2 implies that fl E R. 

Write then fl = Er=oP~fi with fi E C[ql,q2] mad h = E~=0 qlaJ, at • C[q2]. 

We can suppose fr  ~ O, gs ~ O. If s > 0 then by Euclid's algorithm there exist 

hi,h2 • C[q2] such that deg h2 < deg 9s and Ags_l = g~hl + h2. 

Set v := (r - s)q2 + A(2r - s)ql + hi. 

The proof is completed in the following four steps. 
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STEP 1: Set 7 := at,~ - Ba~, + [3v E I ,  then 7 = O. 

This is a consequence of the minimality of/~ and follows by the direct calcula- 

tion of [St, Proposition 2.2]. 

Set S := C[ql,pl], considered as a subalgebra of A2. One writes ~ in the form 

= E~=0 db~ b~ ~ S b, # 0. 
The equality 7 = 0 then gives: 

t 
• i - I  E { t q 2  bi Jr q~+l~lql,bi] + qi2[~ql(qlPl Jr I.t) Jr pl,bi] 

(2) ~=o 
t 

Jr (r - s)q~+lbi + A(2r - s)qi2biq,} = - h , ( E  qi2bi ). 
iffi0 

All the terms in the L.H.S. have degree < t + 1 in q2. Thus deg hi < 1. One 

writes then hi = klq2 + k2, k l ,k2  E C. 

STEP 2: Set u := r -  s + kl ,  then bt is an eigenvector of  ad z with eig'enva/ue - u .  

In particular u E 7. and one can write bt in the form bt = ~ aip~+Uq~ ai E C. 

Inspection of the coefficient of q~+l in (2) gives: ~lq~ , bt] + ubt = O, bt E S and 

the result follows. 

STEP 3: Either  t > 0 or ~ = cp~ -1 for some c E C*, p E {2,3 , . . .} .  

Suppose that t = 0. Then in (2) every term is an eigenvector of ad z, and 

so the sum of all the eigenvectors with the same eigenvalue is 0. In particular 

k2bo = 0 from the - u  eigenvalue and then k2 = 0 because b0 # 0 by hypothesis. 

Again [pl, b0] = 0 from the - u  - 1 eigenvalue which implies b0 E C[p~ ]. 

Yet b0 is an eigenvector of ad z with eigenvalue - u  so b0 = cp~ for some 

~ c \ {0} .  
Finally A([q~pl +/~ql, P~] + (2r - s)p'~ ql) = 0 from the - u  + 1 eigenvalue. Since 

A ~ Q by hypothesis we have in particular that A # 0. A calculation then gives 

that 

-2up'~ql - u ( - u  + I~ - 1)p~'-' + (2r - s)p'~ql = O. 

This gives/~ = u + 1. Yet/~ = b0 = cp'~ so that u is a strictly positive integer. 

This gives # E {2, 3 . . . .  }. 

STEP 4: 1let > 0, then I = A2. 

We shall use the condition A ~ Q. The coefficient of q2 t in the equation (2) is: 

(3) [p,q,, b,_,] + ,,b,_, + ~([q~p, + ~q,, b,] + (2~ - ,)b,q,) + [p,, b,] + k:b, = O. 
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We develop bt-1 as a sum of eigenvectors of a d z  and we collect together all 

the terms with the same eigenvalue. 

We remark that [qlpl, bt-1] + ubt-1 cannot have a term of eigenvalue - u ,  so 

by (3) we obtain k2 = O. 

From (3) we see that bt-1 --- f l  -4- f2 -4- fa where f~, f2, fa, which correspond 

respectively to the eigenvalues: - u ,  - u  + 1, - u  - 1 of adz .  Furthermore f l ,  f2, fa 

must satisfy the following equations: 

[Plql,fl] q- u f l  = O, 

[Plql, f2] + u f2 + A([q~pl + pq,,  bt] + (2r - s)btql ) = O, 

[pl ql , f 3 ] + u f3 + [pl , bt ] = O. 
Equating the coefficient of qt-1 in (2) to zero gives: 

(4) 
tb, + [Pl ql, bt-2] + ubt-2 

+ A{[q~pl + gql, bt-1] + (2v - s)bt-~q, + [pl, bt-1]} -- 0 

View bt as a sum of monomials in S. Let b~ denote the monomial in bt of the 

highest degree (viewed as an element of A2). 

Collecting terms in (4) corresponding to the eigenvalue - u  and of highest 

degree and using the above expression for bt-i  we obtain: 

tb~ - A{[q~pl, [PI, b[]] -4- (2r - s)([pl, b~lql + ~1, b~q,]) -4- ~v,, [q~pl, b;]]) = 0. 

The term in brackets is an integral multiple of b~' and as t # 0 (by Step 3) this 

gives A E Q in contradiction to the hypothesis on A. 

We conclude that I = A2 as required. 

1.3 From now on take ), E C\Q and g E {2,3, . . .}.  Via the lexicographic 

ordering we have %,A2 N R = {0}. 

LEMMA 1: Set af, := P2 + q2plql + A(q2pl + Pql) + Pl. Then avA2 is not a 

maxima/ideal  of  A2. 

Proof: An elementary calculation gives: 

(5) [a . ,pl . -1]  . -1  
+Pl  v = 0  

where v := (p - 1)q2 + 2A(p - 1)ql. Suppose that at, A2 is a maximal ideal. 
p--1 Obviously Pl ~ o~,A2 for # _> 1. Hence there exist el, e2 E A2 such that 

p -1  p - 1  aj, el + Pl e2 = 1, that is 1 - Pl e2 = a~,O. Suppose that e2 E R. Then from 
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t`-I at`Az N R = {0} we obtain 1 - Pl e2 = 0, since # >_ 2 this would imply that 

Pl is invertible in A2, which is false. We can write ~2 = p2/31 + ~2 with/~2 E R, 

~1 E A2 of strictly lower degree in p2 than ~2. Then by (5) we obtain 

#--1 1 - p ,"-1(~2  - ( a .  - , , ) ~ , )  = 1 - p i ' - ' ~ 2  + a . p ,  ~ ,  = a # ( ~ ,  + p f - ' / ~ l )  

which gives at, e ~ t`-1 , = + p ,  e 2 1 where e, = e, + p ~ - l ~ , ,  e~ = e2 - (at, - v)B1. Yet 

e~ has a strictly lower degree in p2 than e2, so we can assume e2 E R, without 

loss of generality. However by our first observation this leads to a contradiction. 
t`--I Combining Lemma 1 with Proposition 1.2 it follows that I := at`A2 -4-Pl A2 

is the unique right ideal satisfying at`A2 ~ I ~ A2. This can be expressed as 

follows: 

LEMMA 2: The right A2/at`A2 is uniserial  of length 2. 

LEMMA 3:A2/a~,A2 is d-critical. 

Proof'. By [Kr-Le, cor 9.6] d(A2/aA2) = 3. 

On the other hand A2/(at`A2 +p~-~A2) is a finitely generated C[ql, q2]-module 

and dA2(A2/(at`A2 + Plt`-1A2)) = d¢[qt,q~](A2/(at`A2 + P1~'-lA2)). Also, since 

A2/(at`A2 + p~-IA2) is a finitely generated C[q~,q2]-module, the GK dimen- 

sion of the latter is < 2, for example by [Kr-Le, Lemma 8.1]. This shows that 

dA2(A2/(at`A2 + p~-lA2)) = 2 as required. 

1.4 Let 0t` denote the automorphism of A2 satisfying: Ot`(p2) = P2 - (# - 1)q2 

and fixing R. By Proposition 1.2 we get that a2-t`A2 is a right maximal ideal 

of A2. Retain the notations of 1.3 and recall that v := (# - t)q2 + 2A(p - 1)q~. 

One has 0t`(a2-t`) = at` - v, so that (at` - v)A2 is a maximal right ideal of A2. 

LEMMA: soc(A2/at`A2) ~- A2/a2-t`A2 

Proo~ By 1.3 we get that 

+ p, A~)/at`A~ ~- p?-iA~/p? -~ na t `A~ =: g .  soc(A2/at`A2) = (at`A2 t`-~ 

Consider p,"-~ as a generator of g .  By (5) we have [at`,p,"-'l t`-I = - P l  v. Thus 

at` - v E AnnA2(p~'-l), so that by our previous observation Ot`(a2-t`)A2 C 

AnnA2 (p~-I). Yet 0~, (a2-t`)A2 is a maximal right ideal of A2, while AnnA~ (p~-l) 

is a proper right ideal. Hence equality holds, and this proves our assertion. 
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Remark: Here we see the the analogy with the spectrum of U(slz) alluded to in 

the introduction. 

1.5 Let e(M) denote the multiplicity of the module M. 

L E M M A :  We have e(A2/(auA2 + pa~-lA2)) = # - 1. 

Proof'. Let {U,},,eN denote the canonical filtration on A2 i.e. U0 = C, UI = 

Cpl +Cp2 +Cqa +Cq2 and U, = (U0+Ua ) "  for n > 2 . Clearly M0 := 

A2/(auA2 + p~-~A2) is generated by W := {i,/Y~,... ,f~#-2} where ~ denotes 

the image of z E As under the canonical projection of A2 onto M. Let us compute 

bounds on dime WU, .  

Suppose that the map w ® z ~ wz from W ~ C[q~, q2] to M0 is not injective. 

Then we have f = Li=0~u-2 Plg,,i. gi E C[ql, q2] whose image is zero in M0, that is 
#--1 #--1 f E aj, A2 + Pl A2. Yet deg f < deg Pl , so this contradicts Proposition 1.2. 

We conclude that 

(6) dime WUn > (# - 1)n(n + 1). 
- 2 

Let Vn denote the space of polynomials of degree < n in C[ql, q2]. We show 

that p'~ E WV,,+t,-2 rood (a~,A2 +p~'-lA2) for all n E N. This implies that 

(# - 1 )  
dime WU.  < - - - - ~ ( n  + # - 1)(n + # - 2). 

Combined with the opposite inequality (6) this will establish the assertion of the 

l e m m a .  

Calculating rood (a u A2 +p~-I  A2) we have P2 = -q2Pl ql - Aq~pl - A#ql -Pa = 

-Pl(q~q, + Aq~ + 1) + (2 - A#)q, E plV2 + V1. 

From the inclusion Vmpl C plVm + V,,-a we obtain rood (auA2 + p~-lA2) 
v'~#--2 i V, that p~ E (plV2 + V1)" C 2.,i=0 Pl n+i C WV,~+j,-2 as required. 

#--1 Remark: By 1.3 we see that (c~A2 + Pl A2)/~#A2 is the only non-trivial 

submodule of A2/cq, A~. Hence A2/auA ~ is a non-trivial extension of the simple 

non-holonomic module M := A2/(~.  A2 + p~'- ~ a~ ). 
Consequently Ext~t2(g ,N ) ~ 0. For # = 2 we get that M ~ C[ql,q2] as an 

A2-module, that is M is isomorphic to the so called standard nmdule over A2. 
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